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SUMMARY

The control volume �nite element method (CVFEM) was developed to combine the local numerical
conservation property of control volume methods with the unstructured grid and generality of �nite
element methods (FEMs). Most implementations of CVFEM include mass-lumping and upwinding
techniques typical of control volume schemes. In this work we compare, via numerical error analysis,
CVFEM and FEM utilizing consistent and lumped mass implementations, and stabilized Petrov–Galerkin
streamline upwind schemes in the context of advection–di�usion processes. For this type of problem,
we �nd no apparent advantage to the local numerical conservation aspect of CVFEM as compared
to FEM. The stabilized schemes improve accuracy and degree of positivity on coarse grids, and also
reduce iteration counts for advection-dominated problems. Published in 2005 by John Wiley & Sons,
Ltd.

KEY WORDS: advection–di�usion; control volume �nite element; streamline upwind control volume;
numerical conservation

1. INTRODUCTION

In this paper we compare control volume �nite element methods (CVFEM) with ‘tradi-
tional’ �nite element methods (FEM), Galerkin �nite element (GFEM) and streamline up-
wind Petrov–Galerkin (SUPG), in the context of scalar advection–di�usion. The advection–
di�usion equation (ADE) is the simplest model of more complicated �ow processes, such as
viscous �ow. The CVFEM method, as it is known today, appears to have been developed in
1980 by Baliga and Patankar [1] for advection–di�usion problems using triangular elements
with directional upwind interpolation, and by Ramadhyani and Patankar [2] for the Poisson
equation using quadrilateral elements. Ramadhyani and Patankar [3] extended the method
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to advection–di�usion problems using quadrilateral elements and upwind interpolation. For
certain problems, these upwinding schemes were found to su�er from excess cross-wind dif-
fusion and oscillations due to generation of negative coe�cients, hence Schneider and Raw
[4] developed a skew-upwind scheme on bilinear quadrilateral elements. Subsequent devel-
opments include tetrahedral elements for incompressible �ow [5, 6], and various upwinding
schemes. Gresho and Sani [7] have presented a detailed description of the CVFEM scheme,
without upwinding or mass lumping, and compared it to the GFEM, including Fourier spec-
tral analysis of dispersion characteristics in one dimension. Given that the CVFEM seemingly
combines the best attributes of GFEM and control volume methods, it is perhaps surprising
that it has not attained the popularity of these methods. The present comparison will attempt
to clarify this issue.
It is worthwhile to make the distinction with another method in the literature, which

often also goes by the name control volume �nite element method. An early example of
this technique is in Reference [8] for oil reservoir problems; current examples include several
papers by Forsyth and co-workers for nonisothermal two-phase �ow in porous media; see,
for example, References [9–11], and their included references. Neises and Steinbach [12] dis-
cuss this scheme for incompressible �ow and Lohner [13] devotes Chapter 10 to discussing
this technique, which he calls an edge-based FEM. While the approximations used by these
researchers to arrive at their discrete equations can vary somewhat, they all start with �nite
element formulations and arrive at discrete equations that are edge based, as in a traditional
control volume scheme. By edge based, we mean that the resulting discrete equations have the
pairwise di�erence form between nodal variables. What distinguishes the edge-based method
from the CVFEM, is that in the latter method the control-volumes are explicitly de�ned in
space (see Figure 1); they form a dual-mesh with respect to the �nite element mesh. In the
edge-based method, the control volumes are not explicitly de�ned, they essentially overlap
within the �nite elements. Furthermore, the edge-based form is derived from �nite element
equations via manipulations which exploit the properties of the basis functions; there are no
explicit surface integral calculations as in the CVFEM.
A primary motivation for developing the CVFEM was to combine the local conservation

property of control volume methods with the unstructured grid and generality of the FEM.
By contrast, it is generally agreed that the GFEM obeys a global conservation property (e.g.
Section 2.2.3 of Reference [7]), however, the local conservation property is perhaps not as
well-understood. Comini et al. [14] argue that the GFEM is locally conservative by deriving
balances at the element and node level; their argument is rather subtle. Gresho and Sani [7]
discuss the conservation properties of GFEM but are ambivalent on whether GFEM is locally
conservative. They discuss both viewpoints, using arguments similar to Comini et al. [14]
in their Appendix 2 and leave it to the reader to decide. Recently, Hughes et al. [15] have
demonstrated the local conservation property of the GFEM, albeit with respect to conservative
nodal �uxes whose calculation requires a post-processing step. In a similar vein, we show that
the global conservation properties of the CVFEM scheme also require the post-processing of
certain (computational domain) boundary �uxes to assure global conservation in the presence
of Dirichlet boundaries.
In addition to conservation issues, another classic problem for numerical methods is their

treatment of advectively dominated �ows. The developers of CVFEM referenced above treated
advectively dominated problems with ad hoc upwind schemes. By ad hoc, we mean that the
advection schemes were developed apart from the weighted residual principle upon which
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Figure 1. Grid system for the CVFEM discretization. The shaded region is �p and �p= @�p.

CVFEM is derived. Furthermore, most of these methods depart further from the weighted
residual formulation by lumping the mass matrix, which, according to Gresho and Sani ([7],
Sections 2.2.6 and 2.5.3), destroys the conservation property of the original scheme. An ex-
ception is the work of Swaminathan and Voller [16, 17] who discussed the development of a
streamline upwind version of the CVFEM. They coined the method SUCV, for streamline up-
wind control volume, as a follow-on to the SUPG scheme of Hughes and co-workers [18, 19].
The scheme was formulated in an analogous way to SUPG, in the context of a Petrov–Galerkin
method. These methods have recently been analysed and compared via Fourier analysis by
Christon et al. [20] in 1D and Voth et al. [21] in 2D, as part of a larger set of methods for
advection–di�usion problems.
In the following, we review the formulation of the CVFEM and SUCV scheme in a slightly

di�erent way than Swaminathan and Voller [16]. By recognizing that the CVFEM derives from
a weighted residual statement in which the weight function is a distribution, the derivation
follows simply by exploiting the operational characteristics of the particular distribution. The
numerical implementation of the methods is then discussed. Next, the conservation properties
of the CVFEM are analysed. It is shown that consistent �uxes on Dirichlet boundaries are
necessary to assure global conservation. Finally, the methods are compared in detail via error
analyses on several test problems chosen to elucidate di�erent aspects of the operators. The
analysis compares accuracy, conservation and positivity of CVFEM, SUCV, GFEM and SUPG.

2. PROBLEM FORMULATION

The initial-boundary value problem for the ADE is formulated as follows:

R(x; t) = �C
@T
@t
+∇ • (�(u))−Q=0 in � (1)

where the �ux vector is de�ned by

�a = �CuT (advective �ux)

�d =−k∇T (di�usive �ux) (2)

�(u) = �a + �d (total �ux)
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The ADE is subject an initial condition,

T (x; 0)=T0 in � (3)

and boundary conditions,

T = g(x; t) on �g

�(u) • n= h(x; t) on �h
(4)

Here � is an open bounded region with piecewise smooth boundary �= @�; �g; �h are
nonoverlapping partitions of �. The outward-pointing unit normal to � is denoted by n=
(nx, ny; nz). The equation is written as an energy equation, but the dependent variable could
represent a number of other (passive) scalars. The speci�ed data include a divergence-free
velocity �eld (u), a source function (Q), volumetric heat capacity (�C), and di�usion coe�-
cient (k), which may be zero in some cases. Boundary conditions include Dirichlet (essential)
boundaries (�g) and �ux boundaries (�h). The �ux boundary condition needs clari�cation. On
in�ow regions of the boundary (u•n¡0) the convective and di�usive �uxes can be speci�ed,
while on out�ow portions of the boundary, only the di�usive �ux may be speci�ed.
In the following we discuss the discrete formulation of the subject problem in the context of

the CVFEM. The formulation of GFEM and SUPG methods is well established [18, 22, 23]
and will not be discussed here. These latter methods have been implemented in the code
MPSalsa [24] developed at Sandia National Laboratories, which was used in this study for
comparison with the CVFEM-based schemes.

3. CONTROL VOLUME FINITE ELEMENT METHOD

3.1. Mathematical formulation

A derivation of the control volume equations in the context of a weighted residual scheme was
presented previously by Swaminathan and Voller [16, 17] and Swaminathan et al. [25]. They
derive their �nal equations by direct integration, allowing the �ux and=or weight function to be
discontinuous across certain internal (�nite element) boundaries. Here we review the derivation
and present it in a slightly di�erent way, using the apparatus of generalized functions.
A weak solution is sought to the ADE by formulating a weighted residual statement∫

�
wR d�=0 (5)

in a domain � with boundary �. Here R is the residual equation de�ned in Equation (1) and w
is the weight function. The idea of the weighted residual statement is to �nd a weak solution
such that the residual is orthogonal to the weight function. Substituting from Equation (1)
and integrating the �ux term by parts we get,∫

�

{
w
(
�C
@T
@t

−Q
)
+∇ • (w�)− ∇w • �

}
d�=0 (6)
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Now, rather than choosing the weight functions from typical FEM theory (C0 functions with
square-integrable derivatives), here we choose the following volume indicator distribution:

w= �p=

{
1 in �p ⊂ �
0 in the complement

(7)

Useful properties of this generalized function include (Gray et al. [26], Equation (3.37))

∇�p= − n�(x − x�p)

and (Gray et al., [26], Equation (6.20b)),∫
�∞

∇ • (�p�) d�= 0∫
�∞

∇�p • � d�=−
∫
�p=@�p

� • n d�
(8)

where � in this case denotes any smooth vector �eld, n is the outward-pointing unit normal
to �p, �(x − x�p) is the Dirac � function, which is zero everywhere except on �p(=@�p),
and �∞ denotes all of free space. To make use of these formulae, we extend the integral
in Equation (6) over an in�nite volume, and upon substitution for the terms involving the
�uxes, we obtain the desired control volume equation for control volume p∫

�p

(
�C
@T
@t

−Q
)
d� +

∫
�p
� • n d� +

∫
�p∩�h

h d�=0 (9)

where the last integral on the LHS applies when part of the subdomain volume coincides with
the �ux boundary (and in which case the second integral would apply to the control volume
boundary modulo the intersection with �h). This is also the control volume formulation of the
ADE obtained from continuum mechanics. Note that in the numerical method we do not typi-
cally apply this conservation equation to Dirichlet control volumes (DCVs), since the solution
is given there by the boundary conditions. However, this has important implications for global
conservation properties as we shall see in the following. Upon discretization, this becomes the
grid-point control volume equation. This form of the conservation equation explicitly displays
the control-volumewise conservation property of the associated numerical scheme.
To derive the CVFEM form of the SUPG scheme, the Petrov–Galerkin method of FEM [22]

is followed. The weighting function is now de�ned by

W =w + p (10)

where w is the weight function described above for the CVFEM, and the perturbation weight-
ing is de�ned by,

p= �u • ∇w (11)

The time-scale factor � will be discussed shortly. The Petrov–Galerkin weight function used
in the derivation of Swaminathan and Voller [16] includes a sign change, W =w − p, in
order to obtain the appropriate sign for the arti�cial di�usion term. For the present deriva-
tion, substituting this Petrov–Galerkin weight function into the weighted residual statement,
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Equation (5), and choosing the volume indicator distribution as the weight function for the
control volume �p, will result in Equation (9) plus a ‘stabilizing’ term,∫

�p
(�Ru) • ∇�p d�= −

∫
�p
�Ru • n d� (12)

where we have applied the properties of the volume indicator distribution. Thus, the streamline
upwind form of CVFEM, which we will refer to as SUCV, following Swaminathan and
Voller [16, 17], is∫

�p

(
�C
@T
@t

−Q
)
d� +

∫
�p
� • n d� +

∫
�p∩�h

h d�−
∫
�p
�R u • n d�=0 (13)

where we have applied the �ux boundary condition, if appropriate to this control volume.§ This
SUCV scheme is the analogue of the SUPG method for �nite elements [18, 23]. The present
formulation generalizes the derivation of Swaminathan and Voller [16, 17]. The explicit form
of the arti�cial di�usion term in this method can be exposed by substituting the advec-
tion term, �Cu • ∇T , in place of the full residual in the stabilizing term of Equation (13),
resulting in ∫

�p

(
�C
@T
@t

−Q
)
d� +

∫
�p
�CTu • n d� +

∫
�p∩�h

h d�

=
∫
�p
n • (kI+ ��C uu) • ∇T d� (14)

The di�usion term on the RHS includes the isotropic physical di�usion plus a (tensor-valued)
streamline upwind arti�cial di�usion term. This provides the streamline upwind stabilization
for this scheme.
Note that the conservation law has been modi�ed in the SUCV formulation. From Equation

(13) the control volume equation is seen to conserve a modi�ed e�ective �ux,

�e� = (�CT − �R)u − k∇T (15)

In the discrete form, the appended term (� uR) is never nonzero, hence, the stabilized formu-
lation has an inherent conservation error with respect to the true physical �ux. This aspect
is also true of the SUPG and related stabilized FEM formulations, and in all methods with
so-called arti�cial di�usion. In the Fourier analysis of Christon et al. [20] the spectral nature
of arti�cial di�usion is illustrated for many popular numerical schemes, including those dis-
cussed here. The better numerical schemes inject appreciable arti�cial di�usion only for short
wavelength modes, in the same spectral range where dispersion errors also become signi�cant.

§To be precise, the limits on the �ux integral (second term) should read �p\(�p∩�h) to indicate that this integral is
performed only over portions of the control volume boundary that do not coincide with any applied �ux boundary
condition. The �ux boundary condition is applied in the third integral, if it applies. We will continue to
use this simpli�ed notation in the following.
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3.1.1. Stabilization parameter. We use the stabilization parameter as de�ned by Shakib
et al. [27],

�=�

[(
2�C
�t

)2
+ (�C)2uigijuj + 9k2gijgij

]−1=2
(16)

where gij is the metric tensor for the element mapping. This metric provides a consistent
method for computing the representative element size for unstructured grids. For large Peclet
number, �=O(h=‖u‖), while for vanishing Peclet number, �=O(h2=�), where h denotes a
mesh size measure and �= k=�C. For steady problems the term involving the time step �t
is omitted. The only modi�cation to Shakib’s formula is the factor �, which can be used to
optimize the dispersive properties of the SUCV scheme under pure advection conditions on
Cartesian grids [20]. In general, the time term will dominate as �t → 0, which has the e�ect
of annihilating the stabilization. As we demonstrate later in the examples, for pure advection
we �nd improved performance by omitting the time term entirely and specifying �=1 for
SUCV and �=2=

√
15 for SUPG.

3.2. Remarks on comparison with GFEM and SUPG

As originally discussed by Brooks and Hughes [18], the SUPG formulation can be written as
follows: ∫

�

{
w
(
�C
@T
@t

−Q
)

− ∇w • �
}
d� +

∑
e

∫
�e
pR d�=

∫
�h

wh d� (17)

with p as de�ned in Equations (10) and (11), and residual R as de�ned in Equation (1); the
second integral is the so-called stabilizing term. The GFEM formulation results by omitting
the stabilizing term. The � stabilizing parameter used in the SUPG method implemented
here is the same as used for SUCV, given in the previous section. The SUPG is called a
consistent method, because the weak formulation is satis�ed by the exact solution. However, as
typically implemented for low-order elements, and in the following applications, the physical
di�usion term in the residual R is usually omitted. Similarly, the CVFEM and SUCV derive
from the variational statement in Equation (5), and could also be called consistent in this
sense. Here too, typical implementations include various ad hoc approximations which would
seem to obviate the consistency, including mass lumping, which is almost universally applied.
Furthermore, it is clear from the formulations of both SUPG and SUCV that the original
advection–di�usion PDE has been modi�ed. Thus, both of these models conserve a �ctitious
numerical �ux as opposed to the true physical �ux, �, given in Equation (2). This is the price
to be paid for these ‘stabilized’ methods, which allow one to compute reasonable solutions
on underresolved grids. The originating methods are not unstable, they work �ne on resolved
grids, assuming the problem is continuous (no shocks or square waves). Unfortunately, a
resolved grid is simply unfeasible for many practical problems with sharp layers and high
(with respect to a practical mesh) gradients.

3.3. Discrete (vertex-centred) formulation

3.3.1. Spatial discretization. Spatial discretization is accomplished by using �nite element
techniques. Figure 1 shows the 2D grid system for quadrilateral elements used for de�ning
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the vertex-centred control volumes [28] as a ‘subgrid’ of the �nite elements. The �gure shows
a patch of 4 elements and a break-out of one particular �nite element showing the subcontrol
volume (sometimes called a co-volume) and its boundary inside the element.
Within each element, the unknown is represented in terms of the FEM basis

T (x; t) =
∑
J
NJ (x)TJ (t) (18)

where NJ are the nodal interpolation (basis) functions and TJ are the nodal values of tempera-
ture. Bilinear quadrilaterals were applied in this work. With this representation, the numerical
approximation to the ADE, including the stabilizing SUCV term, can be written for the I th
control volume as∫

�I

∑
J
(�CṪ −Q)JNJ d� +

∫
�I

∑
J
n • (�CuNJ − k∇NJ )TJ d�−

∫
�I
�Ru • n d�=0 (19)

The control volume boundary within the element is along the bisectors of the (square) element
in the mapped domain. Details of the calculation of the stabilizing terms are given in the
following. Note that the foregoing discrete problem will lead, in general, to an unsymmetric
mass matrix on general unstructured grids. Only for Cartesian grids will the mass matrix be
symmetric.

3.3.2. Time integration. The variable-step, predictor–corrector method introduced by Gresho
et al. [29] is implemented, including both a �rst-order (in time) and second-order scheme.
The �rst-order scheme employs a forward Euler predictor with a backward Euler corrector.
The second-order scheme employs an Adams–Bashforth predictor,

Tp;n+1 =Tn +
�tn
2

((
2 +

�tn
�tn−1

)
Ṫ
n − �tn

�tn−1
Ṫ
n−1

)

to provide an initial estimate of the temperature at the next time step, with a trapezoid rule
corrector

Ṫ
n+1
=
�
�t
(Tn+1 − Tn)− (�− 1)Ṫ n

where �=2 for trapezoid rule and �=1 for backward Euler. This trapezoid rule is second-
order accurate in time. The trapezoid method requires a start-up technique; the Euler scheme
is used for the �rst two time steps in a transient simulation.

3.3.3. Finite element calculations. The foregoing discrete approximations follow standard �-
nite element practice [22]. The actual computer processing of the discrete equations can also
be performed in the same manner as for FEM. The FEM data structure is retained and the
discrete equations are processed in element loops. The processing over each element involves
computing element control volume equations for each subdomain (see Figure 1) which can
then be assembled into a global matrix. Applying the foregoing approximations, the discrete
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equations pertaining to control volume (node point) I take the following form:

∫
�I
� • n d�=

∫
�I
(�Cu • n)�N1; : : : ; Nn� d�

⎛
⎜⎜⎜⎝
T1
...

Tn

⎞
⎟⎟⎟⎠

−
∫
�I
k
(⌊
@N1
@x

· · · @Nn
@x

⌋
nx +

⌊
@N1
@y

· · · @Nn
@y

⌋
ny

)
d�

⎛
⎜⎜⎜⎝
T1
...

Tn

⎞
⎟⎟⎟⎠ (20)

for the �ux terms, and

∫
�I
(�CṪ −Q) d�= �

�t

∫
�I
�C�N1; : : : ; Nn� d�

⎛
⎜⎜⎜⎝
T1 − Tn1
...

Tn − Tnn

⎞
⎟⎟⎟⎠

−
∫
�I

�N1; : : : ; Nn�

⎛
⎜⎜⎜⎝
Q1 + (�− 1)Ṫ n1

...

Qn + (�− 1)Ṫ nn

⎞
⎟⎟⎟⎠ d� (21)

for the volume terms, and where we have applied the time integration scheme. The superscript
refers to the previous (nth) time plane and unsubscripted variable refer to the current time
plane. Note that these CVFEMs require both volume integrals and surface integrals, whereas
processing of FEM requires mostly volume integrals, except for (usually) a modest number
of boundary terms. Calculation of these integrals follows standard FEM practice [7, 22].

3.3.4. Stabilizing term. The SUCV stabilizing term has the form∫
�
�u • n

(
�C
@T
@t
+∇ • (�CuT − k∇T )−Q

)
d�

=
∫
�
�
[
u • n

(
�C
@T
@t

−Q
)]
+ �

⎡
⎣�Cn • uu • ∇T︸ ︷︷ ︸
streamwise di�usion

−ku • n∇2T

⎤
⎦ d� (22)

in which an arti�cial di�usion term is explicitly marked. With the exception of the second-
order di�usion term, the operators can be expanded in terms of the bilinear (trilinear in
3D) basis discussed in the previous section. Brooks and Hughes [18] discuss conditions under
which the second-order di�usion term can be dropped for low-order elements. This is common
practice, although not necessary in terms of implementation. This second-order di�usion term
could be approximated either by a projection or by a gradient reconstruction method, for
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example, by a discrete application of the divergence theorem. The point of either method is
to compute the temperature gradient at the nodes so that it can be represented throughout
the element via the basis. Either method of calculating the gradient representation involves
a larger stencil than simply the local values restricted to one �nite element. Using such a
method, the second-order di�usion term becomes

∫
�I
�ku • n∇ • S d�=

∫
�I
�ku • n

⎛
⎜⎜⎜⎝
⌊
@N1
@x

· · · @Nn
@x

⌋⎛
⎜⎜⎜⎝
Sx1
...

Sxn

⎞
⎟⎟⎟⎠

+
⌊
@N1
@y

· · · @Nn
@y

⌋⎛
⎜⎜⎜⎝
Sy1
...

Syn

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ d� (23)

where we have written S for the nodal representation of ∇T . If we use a FEM-based projection
scheme, this is obtained by solving (in 2D)[

M 0

0 M

](
Sx

Sy

)
=

∫
�

∑
J
NI

(
@NJ =@x

@NJ =@y

)
TJ d� (24)

where M is a �nite element mass matrix.

3.3.5. Boundary conditions. Dirichlet boundary conditions are applied by replacing the
conservation equation pertaining to a Dirichlet boundary node with an identity enforcing
the desired boundary value. This is accomplished by specifying the residual equation for this
node in the form RI =TI − g(xI ; t).
Flux boundaries with in�ow (u •n¡0) are treated by simply substituting the speci�ed total

�ux h(x; t) into the �ux integral. On out�ow boundaries, only the di�usive component of �ux
can be speci�ed; the advective component is treated implicitly. A common treatment of an
out�ow boundary (denoted �+h ) is to specify the di�usive component to be zero. In this case
the boundary �ux term becomes

∫
�I∩�+h

� • n d� =
∫
�I∩�+h

�Cu • n �N1; : : : ; Nn� d�

⎛
⎜⎜⎜⎝
T1
...

Tn

⎞
⎟⎟⎟⎠ (25)

which forms an implicit equation involving the boundary values of temperature on the out�ow
boundary.

3.3.6. Solution procedures. The FEM code MPSalsa [24], designed to solve reactive �ow
problems, was used as a platform for computer implementation of the foregoing numerical
schemes. This facilitates an implementation that includes advanced features such as unstruc-
tured grid and parallel processing. The discrete system of equations is formulated in ‘residual’
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Figure 2. Domain with highlighted Dirichlet control volumes.

form to allow a Newton iteration scheme in the general case of temperature-dependent ma-
terial properties, or to accommodate other nonlinearities in the speci�ed data. The resulting
linear systems were solved using the Aztec [30] parallel processing linear equation package.
In the following, CVFEM=SUCV simulations are compared to simulations using GFEM=

SUPG. These latter methods are included in the MPSalsa code, which was used to provide
the comparison calculations.

3.4. Conservation properties of the CVFEM and SUCV

A signi�cant motivation for the development of the SUCV by Swaminathan and Voller [16, 17]
was to combine the favourable aspects of FEM (especially SUPG) with the local, control-
volumewise numerical conservation inherent in control volume methods. Since the CVFEMs
are locally (on each control volume) conservative, by their construction, it would seem obvi-
ous to conclude that they must be globally conservative as well. In fact, this is almost true,
except for consideration of conservation on Dirichlet boundaries. Global numerical conserva-
tion for CVFEM (and SUCV) requires that the �uxes on Dirichlet boundaries be computed
consistently, using the CVFEM conservation equations, which are abandoned when applying
Dirichlet BC values.
Consider Figure 2 which depicts a discretized computational region including both �ux

and Dirichlet boundaries. The DCVs are highlighted in Figure 2, and the �nite elements to
which they belong are explicitly outlined. The global conservation equation is determined by
summing Equation (13) over control volumes. Note that integrals of the boundary �uxes are
continuous across the control volume surfaces and therefore cancel out in this process. In
the numerical method, we do not apply the control volume equations to DCVs. Rather, these
equations are replaced by an identity that speci�es the known Dirichlet boundary values. So,
if we sum together the remaining control volume equations, we get the conservation equation
for a subdomain �′=�−�g, where

�g=
⋃

p∈DCV
�p (26)
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is the set of DCVs, see Figure 2. Performing the summation results in∫
�′

(
�C
@T
@t

−Q
)
d� +

∫
�′
g

� • n d� +
∫
�h

h d�−
∫
�h+�′

g

�Ru • n d�=0 (27)

where �′
g= @�g − �g, the interface between �′ and �g. Note that if �g=?, and hence

�′
p=?, this becomes a global conservation statement for the ADE in the absence of Dirichlet
boundaries.
To this point the numerical scheme has not considered the �ux through Dirichlet bound-

aries and therefore we cannot say whether the method obeys a global conservation principal.
Equation (27) applies only to the subdomain which excludes the DCVs. Now, consider the
control volume equation for a DCV, i.e.∫

�p

(
�C
@T
@t

−Q
)
d� +

∫
�p
� • n d� +

∫
�p∩�g

(�Cgu • n+ �dn) d�−
∫
�p
�Ru • n d�=0 (28)

where �dn ≡ − k∇T • n is the di�usive �ux normal to the Dirichlet boundary and the Dirichlet
boundary values (T = g(x; t)) have been applied. Part of the integral on �p is over surfaces in
common with other DCVs (�′

g ) and part is over �g. This equation can be formed for each
DCV after the solution for T has been obtained, since all entries in the equation would be
known, except for the di�usive �ux on �g. However, the set of equations for all DCVs can be
discretized and solved for �dn to compute a consistent, scalar-conserving di�usive normal �ux
on �g. The procedure would involve representing the normal �ux in terms of the same basis
as the temperature, �dn =

∑
JNJ�

d
n; J . Note that the stabilizing term contains the gradient of this

di�usive �ux, which can also be represented by the gradient of this expansion in terms of
the basis. Substituting this representation into the conservation equations for all DCVs, along
with the known values of T , would result in a (small) system of equations to be solved for
the grid-point values of normal di�usive �ux, �dn; J .
The di�usive �ux thus obtained completes the data required to form a globally conservative

method. If we now sum the control volume equations for �′ and �g, making use of the fact
that the outward normal on �′

g with respect to �g and �
′ are equal in magnitude but oriented

in opposite directions, we get the desired global conservation equation for this method,∫
�

(
�C
@T
@t

−Q
)
d� +

∫
�h

h d� +
∫
�g
(�Cgu • n+ �dn) d�−

∫
�
�Ru • n d�=0 (29)

Thus, by post-processing the conservation equations on the DCVs to compute control-volume-
consistent di�usive �uxes, we get a globally (numerically) conservative formulation, as well as
control-volumewise conservation for the CVFEM. However, the stabilized methods (SUCV)
have a built-in error associated with the appended stabilizing terms with respect to the original
ADE. They are numerically conservative, but with respect to a perturbed (advective plus
di�usive) �ux vector.

4. ERROR ANALYSIS

In this section we compare the CVFEM and GFEM schemes, including their stabilized coun-
terparts, on several test problems chosen to focus on speci�c aspects of advection–di�usion
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processes. The �rst set of test problems considers transient advection while the last considers
steady advection–di�usion. The methods are compared in terms of error norms measuring
accuracy, conservation and degree of positivity.

4.1. Molenkamp problem

There are several versions of the so-called Molenkamp problem, apparently deriving from the
problem discussed in Reference [31], which, in general, involves the advection of an initial
scalar distribution by the 2D �ow �eld for solid body rotation:

u= −!y; v=!x; !=2	 (30)

Di�erences in later speci�cations of this problem involve variations in the form of the initial
pro�le. The current version follows the speci�cation of Vreugdenhil and Koren [32] in which
a Gaussian initial pro�le is used. The exact solution is

T (x; y; t)=0:014r
2
; r=((x + 1=2 cos(!t))2 + (y + 1=2 sin(!t))2)1=2 (31)

from which is speci�ed the initial condition (t=0) and boundary condition at in�ow. The
solution is to be computed for one full revolution (t=1) in the region −16x; y61 on a
sequence of uniform grids (20× 20, 40× 40 and 80× 80). The extent of this domain is such
that the solution values on the boundaries are small but �nite. Therefore, in�ow and out�ow
boundary conditions need be speci�ed in general. The in�ow boundaries are speci�ed as
Dirichlet. Out�ow boundaries are natural boundary conditions for the GFEM, and no boundary
condition need be speci�ed explicitly. For the CVFEM, the out�ow boundary conditions are
treated implicitly by integrating the out�ow of advected energy using the current value of T ,
as in Equation (25).
In addition to this ‘standard’ sequence of grids, a sequence of spatially extended grids was

also considered. These spatially extended grids cover −1:56x; y61:5, while retaining the
same uniform grid spacing of the standard grids, h=1=10; 1=20 and 1=40, where h denotes
the mesh spacing in either coordinate direction. These spatially extended grids were studied to
compare the e�ects of discrete boundary conditions on the error analysis; boundary conditions
errors should be negligible on the spatially extended meshes.

4.1.1. Metrics. Overall accuracy of the methods is measured by the error in |1 − Tmax|
(=1 − max(Tnumerical(i; j))|), which is a measure of peak resolution, and by the L1 error
norm, here de�ned by

‖�T‖1 = 1
N

∑
i; j

|Texact(i; j)− Tnumerical(i; j)| (32)

Positivity and conservation are measured by

|Tmin|= |min(Tnumerical(i; j))| (33)
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and

|1− r|=
∣∣∣∣∣1−

∑
i; j Tnumerical(i; j)∑
i; j Texact(i; j)

∣∣∣∣∣ (34)

respectively. These metrics were used by Vreugdenhil and Koren [32], and allow comparison
with the results they give.
We note here that we may potentially do GFEM methods a disservice by these choices for

error norms. The GFEM provides the optimal numerical solution (Th) in the energy norm,(∫
� ∇(T − Th) • ∇(T − Th) d�

)1=2, for the Poisson equation (see Reference [7], Section 2.2.6).
On the other hand, the energy norm does not have any special signi�cance to the CVFEM.

This is a continuing dilemma when comparing di�erent numerical methods via numerical
analysis. Gresho and Sani (Section 2.2.6) have veri�ed, for particular solutions of the Poisson
equation, that the bilinear GFEM outperforms CVFEM in the energy norm, but the ‘GFEM
does not win by much’. While we acknowledge these issues with respect to the norm, we
will stay with the norms de�ned above as they at least have no preference to either method.
We shall see that, aside from di�usion-dominated advection–di�usion problems discussed in
a subsequent test problem, the GFEM schemes outperform CVFEM on the Molenkamp test
problems.

4.1.2. Results. Time integration was performed using the second-order trapezoid rule. To
ensure that the time integration error is rendered negligible compared to spatial error, multi-
ple simulations were run with decreasing (�xed) time step values until convergence was noted.
The spatial discretization utilized 4-node bilinear elements for both FEM and CVFEMs. Sam-
ple solutions are shown in Figure 3.
Figure 4 depicts the results of the error analysis on the Molenkamp problem. The leg-

end labels results for the various methods studied with a di�erent symbol. The solid lines
correspond to results obtained on the standard grids (−16x; y61) and dashed lines are for
simulations performed on the spatially extended grids (−1:56x; y61:5). On the standard grids
the Gaussian distribution just grazes the boundaries, for example, attaining a value of 0.01
on the mid-sides of the mesh. This results in su�cient boundary interaction that the in�ow
and out�ow boundaries must be carefully applied. On the extended meshes the computa-
tional boundaries are su�ciently remote that the e�ect of boundary condition treatment is
negligible. The e�ects of boundary treatment will be evident with respect to the conservation
metric.
The results for SUPG and SUCV are obtained by specifying a modi�ed version of the

Shakib � parameter given in Equation (16). The � parameter used in this particular problem
excludes the time term, (2�Cp=�t)2. The reason for excluding this term is that it dominates
as �t → 0. As noted above, these results were obtained with time steps small enough to
eliminate time truncation error compared to spatial error. This is accomplished by computing
solutions with decreasing time-step size until convergence is observed. With the unmodi�ed
Shakib parameter, the stabilization disappears in this time-step-re�nement process. The Shakib
parameter imposes a relationship between acceptable values of time-step size and spatial-mesh
size. Instead, we chose to use the � factor to optimize the phase error characteristics of these
stabilized methods for pure advection. The value �=2=

√
15 is used to ‘optimize’ the SUPG
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Figure 3. Solutions of Molenkamp problem after one revolution on a 20× 20 uniform grid
computed using: (a) GFEM; (b) CVFEM; (c) SUCV; and (d) MLGFEM.

for dispersion error; for SUCV �=1 is used.¶ See Reference [20], for a discussion of how
these values are optimal for reducing dispersion errors.

4.1.3. Accuracy. The L1 (Figure 4(a)) and Tmax error (Figure 4(b)) metrics measure plain ac-
curacy of the methods, the former measuring global error while the latter peak resolution. The
best global accuracy, as measured by the L1 error, is obtained by the GFEM, by a signi�cant
margin. Next, in the order of decreasing accuracy are SUPG, CVFEM and SUCV, followed by
the lumped mass versions of GFEM (MLGFEM) and CVFEM (MLCVFEM). These lumped
mass versions produce nearly identical errors, suggesting that MLGFEM and MLCVFEM are
nearly equivalent methods. In 1D, these two schemes are identical (see Reference [7]); in 2D
the schemes are not identical, but they appear to be equivalent. These lumped methods display
error levels of roughly 5 times CVFEM (and SUCV) and more than 2 orders-of-magnitude

¶The element mapping gij metric includes an embedded factor of 12 (on these uniform grids), such that the e�ective
� is 1=

√
15 for SUPG and 1

2 for SUCV.
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Figure 4. Error analysis of Molenkamp problem in terms of: (a) L1 norm; (b) Tmax
norm; (c) conservation norm; and (d) positivity norm. Full and dashed lines denote results

from standard and extended meshes, respectively.

larger than GFEM on the �nest grids. Also, on the �nest (standard) grid, the SUPG L1 error is
about 10 times less than CVFEM and SUCV, which converge to the same error on this mesh.
Errors due to boundary e�ects are notably reduced on the extended meshes when measured
with the L1 norm (Figure 4(a)) for both GFEM and CVFEM.
The deleterious e�ects of introducing arti�cial di�usion (O(h3)) in the SUPG and SUCV

are manifest in the peak resolution, measured by the Tmax norm. GFEM and CVFEM have
no arti�cial di�usion and produce the best peak resolution, although the GFEM clearly out-
performs CVFEM. SUPG produces nearly twice the error of CVFEM, while the SUCV error
is about 3 times that of SUPG.
The boundary conditions have little e�ect on the Tmax metric, hence, results on the extended

grids are not shown for this metric.
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4.1.4. Conservation. The conservation error norm, de�ned in Equation (34), measures the
conservation of (thermal) energy with respect to the exact solution (It is not a measure of
numerical conservation.). Figure 4(c) displays the conservation error on the standard grids.
Conservation error is not shown in Figure 4(c) for the extended meshes because, except on the
coarsest mesh, they are zero to better than six signi�cant �gures for all methods (not includ-
ing the mass-lumped schemes). This result con�rms the assertion that the mass conservation
errors on the standard grid are largely due to the approximate nature of the boundary con-
ditions; in�ow does not equal out�ow because of the inherent approximations in the discrete
boundary conditions. Once again, the GFEM yields the least error in terms of conservation
error as shown in Figure 4(c). It is perhaps surprising that the CVFEM produces more er-
ror than GFEM, since the CVFEM is based on a conservative discretization. Apparently, the
out�ow boundary condition for GFEM conserves better than the out�ow boundary condi-
tion of CVFEM. The conservation norm for SUPG (SUCV) shows convergence to GFEM
(CVFEM) on the �nest mesh, but the stabilization terms have a deleterious e�ect at the coarser
grids levels. On the �nest grid, the mass-lumped methods have the most conservation error,
while the error in the stabilized methods approach their corresponding unstabilized version. It
should be noted that the stabilized methods are intended to improve performance with respect
to nonphysical oscillations on coarse grids. This analysis shows that for pure advection the
conservation of these methods is compromised (even more than mass lumping) on coarse
grids.

4.1.5. Positivity. Neither of the methods considered is positive as indicated in Figure 4(d)
for |Tmin| (The actual values are negative.), however, the SUPG comes close on the �nest
grid where it yields Tmin = − 1:69 × 10−14, basically machine precision. The ‘least’ positive
methods are the mass-lumped schemes. The GFEM results are much better on the same mesh
than the CVFEM values. The extended grid produces much-improved results over the standard
grid for GFEM, except for the coarsest mesh. For CVFEM, improvement is only seen for the
�nest extended grid. SUCV produces the same results on the standard and extended grids.

4.1.6. Apparent convergence rates. Based on results from the two smallest mesh sizes of the
standard grids, the rates of spatial convergence are shown in Table I for the various methods,
based on the L1 error norm.
The rates are all second-order, except for GFEM and SUPG which attain third-order. Al-

though the convergence rates may be similar, the absolute error is much greater for the mass-
lumped schemes, illustrating once again the deleterious e�ects of mass lumping on numerical
dispersion in numerical schemes for pure advection.

Table I. Apparent spatial convergence rates.

Method Convergence rate

GFEM 3.16
MLGFEM 2.05
SUPG 2.92
CVFEM 2.00
ML-CVFEM 2.04
SUCV 1.97
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4.1.7. Summary remarks on Molenkamp problem. Unless positivity is an overriding require-
ment, plain GFEM is the best method on this particular problem, and by a substantial margin.
It is well known that this will not hold true on problems which are not as smooth and well
resolved as the Gaussian distribution studied here. However, on this resolved, nonsingular pro-
�le, the GFEM performance is excellent. SUPG also displays very good overall performance;
however, it is not able to show its full potential because of the highly resolved nature of this
smooth problem.
This study also indicates the potential e�ectiveness of the SUCV, on a su�ciently spatially

re�ned grid. The overall (L1) error and mass conservation error of CVFEM is retained, and
the negative values are much reduced. However, the latter is only reduced to the level of
GFEM, at least on the present problem.
In general, given su�cient mesh resolution, all of these methods are capable of yielding

quite good accuracy for pure advection of a smooth initial pro�le if the consistent mass matrix
is retained. The performance is much degraded, both in terms of dispersion and conservation
errors, with mass lumping—this is not a new �nding.

4.2. Modi�ed Molenkamp problem

4.2.1. Problem de�nition. As noted above, the e�cacy of the stabilized methods cannot be
demonstrated fairly on the Molenkamp problem owing to its smoothness and the good reso-
lution of the grids considered. In this section we make the problem ‘harder’ by specifying a
sharper initial pro�le, leaving other problem speci�cations unchanged. The steepness of the
initial pro�le is chosen such that the pro�le is not well resolved on the coarse (20× 20) grid
but is reasonably resolved on the �ne (80× 80) grid. The initial pro�le is given by

T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 r¡R1

1
2

(
1− tanh

(
2b

R2 − R1 r − R1 + R2
2

))
R1¡r¡R2

0 r¿R2

(35)

with r given in Equation (31), and b=3, R1 = 0:1 and R2 = 0:4. This results in a pro�le with
compact support on the computational domain, thus the in�ow boundaries are speci�ed as
homogeneous Dirichlet boundaries. Out�ow boundaries are speci�ed on the remaining domain
boundary. The initial pro�les on each grid are shown in Figure 5 and illustrate the variation
in resolving power of each grid.
Results of the error analysis are shown in Figure 6, using the same metrics as in the

Molenkamp problem, except for the Tmax norm, which is replaced by the standard in�nity
norm (L∞), since the former is more appropriate for the Gaussian pro�le. The present pro�le
is �at in the vicinity of its centroid.
Results shown by the error analysis can be further understood when compared with the

solution pro�les after one revolution on the grid. The resulting solution pro�les on the 20×20
grid, given in Figure 7, have lost their shape after just one revolution, resembling a Gaussian
pro�le more than the initial pro�le (which, in pure advection, is the exact solution after
one revolution). The SUCV displays the most arti�cial di�usion and the CVFEM the most
dispersion error. These solutions were obtained with the same numerical schemes applied in
the standard Molenkamp problem, including using the modi�ed form of stabilizing parameter
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Figure 5. Initial solution representation for modi�ed Molenkamp problem on:
(a) 20× 20; (b) 40× 40; and (c) 80× 80 grids.

as discussed in Section 4.1.2. Furthermore, the un-stabilized schemes (CVFEM and GFEM)
result in much phase error and thus many ‘wiggles’ in the resulting solution. The stabilized
methods, which contain arti�cial di�usion, tame the wiggles, but at the expense of di�using
the pro�les.
On the 40×40 grid (Figure 8), GFEM and SUPG are beginning to resolve the ‘�at spot’ at

the centroid of the pro�le, although this mesh is still too coarse for these methods to resolve
it well. The CVFEM and GFEM still produce signi�cant phase error as indicated by the
wiggles. The Tmin norm also shows that these two methods produce the more negative values
on this grid. SUCV is not much better in terms of |Tmin| (a single point norm), but in terms
of the ‘eyeball’ norm it is seen to have tamed the wiggles. Note that the SUPG produces
both leading and lagging phase error, whereas the SUCV displays only lagging phase error.
The solution pro�les on the 80 × 80 grid (Figure 9) for GFEM and especially SUPG are

a reasonably good facsimile of the analytical solution (cf. Figure 5). CVFEM and SUCV are
not as accurate at this grid spacing.
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Figure 6. Error analysis of the modi�ed Molenkamp problem in terms of: (a) L1 norm;
(b) L∞ norm; (c) conservation norm; and (d) positivity norm.

4.2.2. Accuracy. As shown in Figure 6(a), SUCV represents an improvement in accuracy
on all grids when compared to CVFEM. Similarly, SUPG outperforms SUCV on all grids.
GFEM, however, crosses over in going from the coarse to �nest grids, ending up with similar
error as SUPG on the 80 × 80 grid. For GFEM and CVFEM, errors in this problem derive
solely from dispersion (phase and group speed errors). Fourier analysis [7, 20, 21] of these
methods predicts greater phase error for the latter method; this agrees with present results.
Considering Figure 2.6-15 in Reference [7], which shows dispersion error as a function of
dimensionless wave number (k) or wave length (
),

k�x
	
=
2�x
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Figure 7. Solutions of modi�ed Molenkamp problem after one revolution on the 20×20 grid
from: (a) SUCV; (b) CVFEM; (c) SUPG; and (d) GFEM.

one can estimate the grid resolution necessary to maintain accuracy with respect to the fre-
quency content of the initial pro�le. From Equation (35), a rough estimate for the characteristic
wavelength in the initial pro�le is to take 2
=R2−R1 = 0:3. This leads to 2�x=
=1:33, 0.67
and 0.33 on the 20× 20, 40× 40 and 80× 80 grids, respectively. With respect to the phase
error function from Fourier analysis, this would suggest that the 20 × 20 grid will produce
signi�cant dispersion error (up to and beyond the Nyquist frequency, 2�x=
=1), whereas
the 80 × 80 grid may result in less than 10% phase error for all methods. On a qualitative
basis, this is roughly what resulted; the 20× 20 grid produces much phase error whereas the
80× 80 grid produces reasonably good solutions (this is in fact how we chose the ‘width’ of
the molli�er function in the initial pro�le). It must be noted that the Fourier analysis requires
simplifying assumptions (unidirectional propagation of monochromatic waves) compared to
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Figure 8. Solutions of modi�ed Molenkamp problem after one revolution on the 40 × 40
grid from: (a) SUCV; (b) CVFEM; (c) SUPG; and (d) GFEM.

the conditions in the present simulations, and so the results from the former analysis cannot
be expected to necessarily match quantitatively.

4.2.3. Conservation. As noted in the discussion of the standard Molenkamp problem, conser-
vation errors for this problem are largely due to error at the boundary. In�ow boundaries were
speci�ed as Dirichlet with zero grid-point values for the solution variable. Wiggles generated
in the interior which propagate to the boundaries produce error in the out�ow regions of the
grid. The conservation norm displays a monotone decrease as the grid is re�ned. Plots of the
solutions (Figures 7–9) after one revolution also show the much reduced boundary error with
grid re�nement.

4.2.4. Positivity. In terms of positivity, it is clear why the stabilized methods, SUPG and
SUCV, are preferred on coarse grids. These methods reduce the wiggles, as can be seen in
Figures 7–9, and quantitatively in the Tmin norm. These methods also improve overall accuracy

Published in 2005 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:347–376



COMPARISON OF GALERKIN AND CONTROL VOLUME 369

0

0.5 T

1

-1

-0.5

0

0.5 X

-1

-0.5

0

0.5
Y

(a)

0

0.5 T

1

-1
-0.5

0

0.5 X

-1

-0.5

0

0.5
Y

(b)

0

0.5 T

1

-1

-0.5

0

0.5 X

-1

-0.5

0

0.5Y

(d)

0

0.5 T

1

-1

-0.5

0

0.5 X

-1

-0.5

0

0.5Y

(c)

Figure 9. Solutions of modi�ed Molenkamp problem after one revolution on the 80 × 80
grid from: (a) SUCV; (b) CVFEM; (c) SUPG; and (d) GFEM.

relative to their unstabilized counterparts. The exception to this is GFEM. On the �nest grid,
GFEM and SUPG produce very similar error levels.

4.2.5. Summary remarks on modi�ed Molenkamp problem. On the same grid, GFEM out-
performs CVFEM, at least for the grids considered here. In the asymptotic limit �x → 0,
both should be second-order accurate, as shown in the standard Molenkamp problem. These
trends holds true for SUPG vs SUCV. On coarse grids, the stabilized methods improve plain
accuracy in addition to positivity, although none of these methods is strictly positive.

4.3. Smith and Hutton problem

The Smith and Hutton [33] problem involves the steady advection–di�usion of a scalar in a
circular �ow �eld given by,

u=2y(1− x2); v= − 2x(1− y2) (36)
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Figure 10. Temperature and streamlines for Smith and Hutton problem.

in a rectangular domain �= {(x; y) : −1¡x¡1; 0¡y¡1}. A steep inlet temperature pro�le
is speci�ed as

T (x; 0)=1 + tanh[�(2x + 1)]; −16x60 (37)

with �=10. The task is to transport (by advection and di�usion) this pro�le through 180◦

for various values of the di�usion coe�cient. Except for the out�ow boundary, the re-
mainder of the computational boundary is speci�ed with the compatible Dirichlet condition,
T =1 − tanh(10). The out�ow boundary is located on y=0 for 0¡x¡1. We will follow
Morton’s speci�cation [28], and compute solutions for �≡ k=�C=10−6; 0:002; 0:01 and 0.1,
on a uniform 20×10 grid. On this standard grid, these di�usivities result in mesh Peclet num-
bers, Pe= ‖u‖h=�=105; 50; 10 and 1, respectively, where ‖u‖=1 and h=�x=�y denotes
the mesh size. Figure 10 depicts the (speci�ed) streamline pattern and temperature distribution
for the case �=0:01 computed on a 160× 80 grid.

4.3.1. Results. Table II shows estimated L1 errors for solutions computed on a uniform 20×10
grid (h=1=10). The benchmark solutions used to calculate these error norms were computed
on highly re�ned grids, with h=1=80 for all but the case of �=10−6 which utilized a �ner
grid, h=1=160. There are several notable results. For each method, the error increases with
(mesh) Pe number. For a given value of Pe number, the error norms are similar (less than
a factor of 2 di�erence) for all methods. At low Pe number, the SUCV scheme performs
best, while the GFEM scheme does the best at large Pe number. However, the di�erences are
modest.
Figure 11 compares the solutions obtained on the 20×10 mesh with the benchmark solutions

used for computing L1 error norms presented in the table above. As noted earlier, there is no
remarkable di�erence in the solutions given by the various methods. Furthermore, the �gure
illustrates that the stabilized methods do not display a signi�cant improvement in the solutions.
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Table II. L1 error (×100) for 20× 10 grid.
Method Pe=1 10 50 105

CVFEM 0.368 0.586 1.41 2.95
SUCV 0.322 0.548 2.21 4.18
GFEM 0.420 0.686 1.30 2.55
SUPG 0.393 0.613 2.04 3.83
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Figure 11. Solution pro�les along the diagonal (0,0)–(1,1) of the 20×10 mesh with di�ering symbols
for each value of di�usion coe�cient, �=10−6 (circles), 0.002 (diamonds), 0.01 (triangles), and

0.1 (squares). The full lines are the benchmark solutions, computed on highly re�ned grids.
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In fact, it can be argued that the unstabilized methods give better solutions at the higher Pe
numbers, where the stabilized methods should provide an advantage. It should be noted that
the �ne grid (benchmark) solutions at �=10−6 were problematic to obtain with the iterative
solvers using ILU preconditioning. The reference solutions in this case were obtained with
the stabilized schemes on a 320× 160 grid (h=0:00625).

4.3.2. Iterative solution characteristics. Although, in terms of solution error, the stabilized
methods show little advantage, they do make the linear systems easier to solve. Table III lists
the number of iterations required to solve the linear systems using GMRES iteration with
ILU(0) preconditioning (except for Pe=105, see below) from the Aztec solver package [30].
The convergence criteria was that the initial residual be reduced by a factor of 10−8; all solves
were started with a zero initial value everywhere on the grid. Except for the largest Peclet
number (smallest di�usivity), the iteration counts are very similar for CVFEM vs GFEM and
SUCV vs SUPG.
The utility of the stabilized schemes is manifested in the large Pe number cases, espe-

cially for Pe=105 (�=10−6). In this case, with vanishing di�usion, the di�usion operators
are all but annihilated. For the GFEM and CVFEM schemes, this leaves only the advec-
tion operators in the stencils, which are skew-symmetric (see, for example, Appendix A of
Reference [20], and therefore have zero diagonal. For this reason, this case could not be
solved using ILU(0)=GMRES; the ILU(0) preconditioner could not be applied on the skew-
symmetric matrices. Instead, for CVFEM and GFEM this case was solved using a third-order
least-squares polynomial (LS3) preconditioner with GMRES. The SUPG and SUCV matrices
include arti�cial di�usion, therefore having nonzero diagonal entries, and were solved with
ILU(0)=GMRES. The table shows an enormous increase in the work required to solve the lin-
ear systems using GFEM and CVFEM (LS3=GMRES) compared to using SUPG and SUCV
(ILU=GMRES) at large Pe number.
Table IV compares iteration counts for GFEM and CVFEM as a function of grid spac-

ing (and of mesh Peclet number) using ILU(0)=GMRES and requiring a residual reduction
tolerance of 10−8. Results from the stabilized versions are not included, as they produce
similar results to the unstabilized methods as the grids are re�ned (grid re�nement dimin-
ishes arti�cial di�usion). GFEM and CVFEM display similar iteration counts as a function
of grid size and di�usion coe�cient. For the di�usion-dominated case (�=0:1), the iteration
count (roughly) doubles as the mesh size is halved. This behaviour is similar to stationary
iteration methods (where the iteration matrix is independent of the iteration history), whose

Table III. Linear solve iterations on 20× 10 grid.
Method

Peclet No. CVFEM SUCV GFEM SUPG

1 10 10 11 11
10 9 7 8 7
50 36 8 35 8
105 504∗ 8 563∗ 9

∗Solved with LS3 preconditioner; all others solved with ILU (0)
preconditioner.
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Table IV. Iteration count as a function of mesh Peclet number.

�=0:1 �=0:002

h Pe GFEM CVFEM Pe GFEM CVFEM

0.1 1.0 11 10 50 35 36
0.05 0.5 20 19 25 18 19
0.025 0.25 38 37 12.5 13 14
0.0125 0.125 77 91 6.25 17 17
0.00625 0.0625 151 193 3.125 37 36

convergence depends on the spectral radius of the iteration matrix (e.g. successive overre-
laxation). The spectral radius increases as the grid size decreases. On the other hand, the
iteration count distribution for the convection-dominated case (�=0:002) displays a mini-
mum for h=0:025 (80 × 40 grid). This is because the grid Peclet number decreases with
decreasing mesh size, changing the (numerical) problem from advection-dominated towards a
di�usion-dominated problem.

4.3.3. A note on convergence rate. In the course of performing the error analysis, it was
noted that the rate of convergence depends on the ‘smoothness’ of the solution, which in
turn depends on Peclet number. For example, the pro�les in Figure 11 for �=0:1 display
an irregularity at the origin, where they appear to have an in�nite slope. Pro�les for other
(smaller) values of di�usivity are smooth. The steep pro�le is due to the large amount of
di�usion away from the speci�ed Dirichlet value imposed on x¡0; y=0.
The order of convergence can be estimated if solutions on three grids are available (e.g.

Reference [34]). For the square grids used here, we assume the truncation error behaves as

Th(x; y)=T (x; y) + c(x; y)hp

where Th represents the numerical solution, T the exact solution and c is a constant indepen-
dent of h. With a known convergence rate, p, this formula can be used to perform Richardson
extrapolation pointwise on the grid. We can also use this truncation error formula to form a
bound on the error norm between two numerical solutions computed on di�erent grids, with
grid spacings hi

‖Th1 − Th2‖6C(hp1 − hp2 ) (38)

If we have solutions on three grids, and if the re�nement factor is uniform (h1=h2 = h2=h3 = r),
then the order of the method can be estimated from

p= log(‖Th2 − Th3‖=‖Th1 − Th2‖)= log r (39)

Table V shows convergence rates computed with Equation (39) using the L1 error norm. The
table shows 3 values for each method in each case. They correspond to the rates estimated
from Equation (39) for each triplet of grids (coarse to �ne from left to right) from the
�ve grids on which the solution was computed, viz. h=0:1; 0:05; 0:025; 0:0125 and 0.00625.
For example, a convergence rate of 1.48 is obtained for GFEM using the solutions on grids
20× 10, 40× 20 and 80× 40 for the case �=0:1.

Published in 2005 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:347–376



374 M. J. MARTINEZ

Table V. Convergence rates.

Method �=0:1 �=0:002

GFEM 1:48; 1:25; 1:18 3:02; 2:06; 1:97
CVFEM 1:35; 1:11; 1:06 3:00; 2:24; 2:02

The case for �=0:002 asymptotes to second-order, in agreement with the mathematical
truncation error formula for these methods [20]. Note that third-order is suggested on the
coarser meshes; this indicates these grids are not in the asymptotic convergence region of these
methods. In contrast, the di�usion-dominated case (�=0:1) displays less than second-order
rate of convergence. Even though the solution is smooth throughout most of the computational
domain, the irregular region noted above will eventually dominate the error norm as the mesh
is re�ned. The results for �=0:1 suggest the rate of convergence in this irregular region is
tending to �rst-order for both GFEM and CVFEM.
This analysis demonstrates the diligence required in choosing a problem for which to per-

form veri�cation of numerical methods. The test problems chosen must be free of singularities
or other irregularities that can give a false impression of the convergence rate of a numerical
scheme.

5. CONCLUDING REMARKS

In this work we endeavoured to carefully compare the control volume �nite element method
to traditional Galerkin �nite element methods, including so-called stabilized formulations for
both. We discussed the formulation of the control volume �nite element methods in terms of
weighted residual methods with generalized weight function. The resulting methods are locally
(control-volumewise) conservative by construction, although the SUCV conserves a perturbed
physical �ux and therefore includes an inherent (energy) conservation error owing to the
stabilization. This is also true of SUPG. It is shown that global numerical conservation in the
presence of Dirichlet boundaries requires consistent post-processing of �uxes on the Dirichlet
boundaries, in a similar way that Galerkin �nite element methods require such post-processing
of �uxes.
The error analysis indicates that there is no apparent advantage in using the locally conserva-

tive CVFEMs over FEMs for linear advection–di�usion problems. There is a large literature
on the desirable feature of local conservation in numerical schemes. For linear advection–
di�usion processes, there are no general arguments to require discrete conservation. If two
methods are both consistent and O(h2), then with proper mesh resolution, they should both
converge to the exact solution. Besides, in either method exact conservation is only approxi-
mated to O(h2).
Unfortunately, these observations cannot be extended to nonlinear problems. For general

nonlinear problems, numerical conservation may be more important, certainly degree of posi-
tivity often is. For example, problems involving real material equations of state require com-
position variables (mass fractions) to be positive; solutions such as those depicted in Figure 7,
if representing composition, would be catastrophic without special treatment in an equation
of state function.
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A summary of the more notable �ndings of the numerical analysis are indicated in the
following list.
For linear transient advection:

• Stabilized methods improve accuracy on coarse grids and positivity on coarse and �ne
grids.

• There is no apparent advantage to the locally conservative CVFEM over the GFEM for
linear advection–di�usion problems.

• GFEM is hard to beat on resolved problems, and stabilized variants do not o�er much
of an improvement.

For linear steady advection–di�usion:

• Stabilized methods reduce iteration counts signi�cantly for advection-dominated problems.
• No signi�cant di�erence emerged between CVFEM and GFEM.
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